THREE NEW SPECIES OF PROPALLENE (PYCNOGONIDA: CAldifpallenidae) From Australian waters

by David A. Staples*

Summary

Staples, D. A. (1979) Three new species of Propallene (Pychogonida: Callipallenidac) from Australian waters. Trans, R. Soc. S. Aush. 103(4), 85-93, 31 May, 1979.
Three species of the genus Propattene are described; P. saengeri sp. nov. from Queensland P. cyathus sp, noy, and P. vagus sp. nov. from Victoria. Ecological notes are provided for two species indicating that both utilize ocean euments as a means of dispersal. The occurtence of cement gland ducts on segments additional to the ferour is secorded for the first time int the genus.

Introduction

In his revision of the Genus Propallene Stsek (1975) recorded its distribution as Japan. southeastern Asia.. southern and southeastern Africa, Madagascar and Sierra Leone. Three new species deseribed here increase the total io ten and establishes a new record from Australian waters. The Australian material is recorded from the shallow waters of two diverse regions: the tropical waters of Quechsland in the north, and the southern temperate waters of Victoria. Propallene sgengeri was collected using a Van Veen Grab during benthic surveys at the mouth of the Calliope River, Gladstone, Queensland. for the Queensland Electricity Generating Board; P. cyalhus was collected using S.C.U.B.A. during an offshore benthic survey for the Latrobe Valley Water and Sewerage Board southwest of Seaspray on the Ninety Mite Beach, and P. vagux was collected using S.C.U.B.A. in the vicinity of Port Phillip Heads. Institutions in which type material has been lodged are referted to by the following abbreviations: National Museum of Victoria (N.M.V.); Tasmanian Museum and Art Gatlery (T.M.): Queensland Museum (Q.M.); Western Australian Museum (W.A.M.): Institute of Taxonomic Zoology, (Zoïlogisch Museum. Amsterdam (Z.M.A.).

Family: CALLIPALLENIDAE
 Propallene cyathus sp, nov.

 FJG. 1A-P. FIG. 2A-BSpecimens Examined: Holotype: \& (ovig.) NMV. K43, 1 km offshore, southwest of Sea-
spray, Bass Strait, Vic.: depth 13 m, coll. J. E. Watson 15.iiv, 77. Allorype: क $\mathrm{N}, \mathrm{M}, \mathrm{V}, \mathrm{K} 44,1$ km offishore, southwest of Seaspray. Bass Strait, Vic:: depth 13 m , coll. N. W. Watson 16,xi.77. Paratypes:- W, A, M, 1 of 78/579.1 है $78 / 580,1$ © $78 / 581,1$ \& $78 / 582,1$ ㅇ $78 / 583$,
 J1353; 3. \& 3 ㅇ N.M.V. K45; 3 \& 3 q Z.M.A. Pa2838; 245 of. 87 9. 32 juveniles lodged in private collection of author.
Description: Trunk segmented, arched, Jateral processes separated by less than own diameter, In male, lateral processes longer than lrunk diameter. In female, lateral processes equal to, or longer than, diameter of trunk. Each lateral process bears tow of $2-3$ (or 4) very smull spinules on mid-dorsal surface; distally each process bears further $2-3$ slightly larget spinules. Abdomen implanted between 4th pair of lateral processes and directed somewhat ventrally, tapering distally. Ocular tubercle low, rounded, eyes indistinctly pigmented; lateral sense organs present.

Chelifores: Scape one-segmented: both fingers curved, gaping when closed, mavable finger with $6-10$ teeth, immovable finger with 5-8 teeth, palm with several long setae

Palps only present in male; oriented ven trally, consisting of short unarmed basal part and robust elaviform distal segment. Length of distal segment 6-7 times its proximal diameter and expands dorsally to maximum width of slightly less than 2,5 times proximal diameter at about one-half its length. Terminally this segment bears dense lateral fringe of curved

[^0]

Fig. 1. Propallene withes sp , nov. A, Cephalic region, lateral view, male; B, Oviger, male; C. Chela. male; D, Oviger, female; E, Proximal segments, leg 4, juvenile male; F, Cephalic region. ventral view, juvenile male; G, Leg 4, male; H. Propodal heel spines, female; 1 , Coxa 2, 3 , $\operatorname{leg} 4$, male; J. Trunk of male, dorsal; K, Trunk of female, dorsal; L, Distal leg segments. male: M. Distal leg segments, female; N. Leg 3, female; O. Palp, male; P. Ocular tubercle,

Fig. 2. A, Propallenc cyathus sp, nov. Compound oviger spines on tenth segment of of oviger (x880). B, Propallene cyalhus sp. nov. Terminal compound oviger spines on tenth segment of oviger ($\times 2400$). C, Propallenc vagus sp. nov. Compound oviger spines $5-8$ on ninth segment of of oviger ($\mathrm{X} \mid 100$). D, Propallene saengeri sp . nov. Terminal compound oviger spine on tenth segment of of oviger ($\times 2200$) (S.E.M. photographs).
setae which progressively increase in length along distal margin. Overall formation of thesc setae resemble a scoop or ladle-like appearance. Specific name alludes to this feature. A group of very long setae, approximatcly 5 times proximal diameter of palp, originates from mid dorsal region.

Oviger 10 -scgmented, without terminal claw. In male, segment 5 longest; segments 3,4 and 5 armed with recurved spinules; distally fifth segment bears setiferous apophysis and well developed process oppositc. Compound spines polymorphous (Fig. 2. A), proximal spines
bear 7-9 lateral teeth on either side, basal 1 or 2 pairs of teeth heavily sclerotized: distal spines shorter and more robust, terminal spinc particularly broad and bears 2-3 very heavily sclerotized basal teeth on either side (Fig. 2. B). Compound spine formula varies considerably between individuals. Spine formula occurring on segments 7-10 in holotype is 8:11:10:14. Scgment 7 armed with 3 very long setae reaching beyond segment 8 . Female ovigcr lacking recurved spinules, segment 4 longest, setiferous apophysis and opposing process lacking on segment 5. Compound spine
formula of allotype for segments $7-10$ is 9:11:9:11t shape al compuund spines as in mate.
Musarements of axiger segments (mm):

 10 今.18, ㅗ.2

Eegs of male l'enur is longest segmeni and hears $15-22$ cement gland tubules ventrally, rows of setac present on both tibiac: tibid 2 longer than tilia 1. Second coxa approximately 3 times us long as its proximal diameter. Well developed processes situated on second coxac of fourth pair of legs; this process beara laferal fringe of curved setae like that found an distal? paip segments. Process usually swoller, howevor, in some specimens distal surface conflined within setiferous fringe may be collapsed. giving concave appearance. Propodus heavy, strongly curved, heel with (wo (or three) terminally erenulate spines. Number of heet spines inconstant. Sole armed with s-7 spines. Terminal claw slender; auxiliaries absent. Genital pores not evident in mate. In female. fertur more swallen than that of male, predpodus morierately slender; genital pores present on ventral surface of second coxac of all legs. In both sexes fourth pair of legs shorter than remaining pairs.

Measurements iof holotype and allotype (myn): length truak (frontal margin of cephalic segment to tip of abdomen) है 2.35 , Q 1.98 ; length cephalan है 1.08 , P 1.05 ; giealest wicth ceptalon it .65 , 9.61 ; length proboscis d.59, 9. 53: greatest width proboscis 6 . 38 , P. 39: width icross second lateral process \& 1.25, 7. 98 ; diumeter trunk *3.35, 9.33 : length veape of 48, 9,42; length palp 3 first seg. 13. seeond seg, .5. Third leg: coxal I 5 . 45, it 3: cnxu 2 \& $59,9,51$, coxa 3 of $4,0.28$; femur S 1.25, ㅁ 1.28 ; thia 1 of 98 , o . 93; tibia 2 of 1.10, \& 7.15; tarsus á .12, 8. 1; propedus \& \% . 6 . Q 54 : claw of $36,7.35$
Rentarki: The bew species is clearly distinguished from alt congeners by the shape and setation of the palps and also in possession of the well developed processes on the 2nd coxae of the 4 th pair of legs in the male. With the exception of P. stocki Fage (in which the 2nd palp segment is slightly dilated), the 2ud palp segment in all species is slender, frequently narrowing to a constriction at $30-50 \%$ of its length. Jo $P_{\text {. }}$ erpartucs the proximal portion is influted dnesully with no constriction evident.

The tall mid dorsal setac found on the 2nd palp segment and the large coxal processes in. the male are not present in any other member of the genus. The only nther species beating if heavy propodus is μ. cravimanus Stock,

Propallene cyathus was found in vast numbers amongst colonies of the arborescent bryozoan Vithaticella fusca? (MeCillivtay) during a benthic survey conducted in November 1977 southwest of Seaspray for the Lalrobe Valley Water and Sewerage Board. Examination of 347 adult individuals showed an extremely high percentage of fertile specimens; 92.9% of the males were ovigerous and 96.8% of the lemales were gravid, Only three specimens of ${ }^{B}$. cyathus were recorded from two previous surveys of the same station in March and August. 1977. In March 1977, one ovigerous mate and two juvenile males were callected. No specimens were recorded from the latter survey. Such a high percentage of fertile specimous in November suggests a cyclic breeding pattern, and the complete absence of specimens just lour months earlier, may indicate a migratory response to their reproductive activity, Hydrological studies by Newell (1961) indicafe a seasonal reversal of current patterns in this region, and it is probable that the extent of migration is largely dependent on the Bass Sirait current system, In many inslances specimens were heavily encrusted with the epiphytic coralline alga Heterndermu sp.

Propallene vagus sp. nov.

FIG. 3A-N, FIG. 2 C
Specimens Examined: Holaryper of N.M.V. K46. 1 km southwest of Port Phillip Heads. Vien: depth 30 m , coll. D. A. Staples 6.vi. 1976. Allowpe: + (grav.) N.M.V K47. Paratypes: 1 \& (sub adule): 8 9 N.M.V. K48. L \& (sub udult), 2 ?. private collection of author. Description: Trunk segmented, strongly arched in male; neek more slender than in female: lateral processes longer than diameter of tronk and separated by less than their own diameter. Ench lateral process bears dorsally 2, 3 (or 4) small distal spines, and 1 or 2 smaller spinules mare proximally. Abdomen short, expanded at basc, inclined ventrally. Ocular tubercle conlcal, more acute in male: four indistinct eyes: Jateral sense organs present.

Chelifores scape one segmented hehring several scattered setae; both fingers curved. gaping when closed, movable finger with 6-7 teeth, immovable finger with 4-6 leeth palm with several long setae.

Fig. 3. Propallene Mugus sp. nov. A, Trunh of female, dorsal; B, Irunh of male; dorsal: C. Palp. male: D. Palp. sub-adult, male; E, Palp and prohoscis, male, ventral view; F. Chela, male: G. Propodus, male; H, Ocular, male, K, Oviger, fomale; L. Leg 3, female; M, Ieg 3, male: N . Propodal heel spines, male.

Palps present only in male; 2 -segmented, basal segment short and unarmed, second segment curved and swollen distally, a slight constriction present at about 30% of its length. measuring approximately $5 \frac{1}{2}$ times its proximal
width. Armed distally with fringe of 20-30 setae.

Oviger of male: segment 10 of holotype damaged (terminal spines lacking), segment 5 longest, distally bearing setiferous lobe and
opposing pointed process, recurved spinules present on segments 3, 4 and 5; eompound spines polymorphous (Fig. 2. C), proximat spintes bear 12-16 pairs of lateral teeth, more or less of equal size; distal spines bear four pairs of heavily selerotized basal teeth. terminal spine broader and shoter than remain der. Compound spine formula variable between specimens, spines on segments 7-10 of holotype according io formula 15:12:11:(12?). Segments 6 and 7 bearing several setae dislally. Female oviger segment 4 longest, segment s without distal lohe and opposing process, recurved spinules absent, compound spine formula of allotype 13:12:11:13; shape of compound spines as in mate.

Mcasurements of oviger segments (mm);

 10 of damaged, \& 29 .

Legs of male: Ferour longest segment, tibia 2 longer than tibia 1. rows of sctac present on both tibiae, Second coxa approximately three times proximal width. Propodus robust: moderately curved, heel with two spines in which crenulation is generally indistinet, sole armed with $10-11$ spinules. Femur with $5-8$ femoral cement glands, Genital pores nor evident. Auxiliary claws absent. Female propodus less robust than in mules distul propodal heel spine more elongated than in male; femur swollen; genital pores present on second voxae of all legs.

Juvenile; Distinguishing features from adult male are smaller size and thore compact and less setilerous palps.

Measurements of holotype and allotype (mm) : length trunk (frontal thargia of cephalie seg to tip of abdomen), of 2.95. 9 2.83: length cephalon of 1.28 . \& 1.63 , greatest width cephalou \&' .93, ㅁ.99; length proboscis 87 76. 9.88 , greatest width proboseis d $.55,9$.65 ; width across second lateral process 81.35 . 9 1.3; diameter of trunk 5t 43, ㅇ, .41; 7ength scape or $.68,9.73$; length palp of first seg. 19, second seg. 54, Third leg: coxal ot -55, ㅇ.55: coxa 2 5. 88 , , 75 ; coxa 3 3' 48 , ㅇ. . 43 ; femur \& 1.43 , \& 1.64; tibia 1 of 1.28 , ? . 1.3; tibia 2 \& 1.4. \% 1.45; tarsus of $15,9,13$; propadus of .8, 9.7: claw 88.48.9.5.

Remarks: Superficially this species resembles P. cyathus sp. nov. in the general shape of the trunk anid in the distal fringe of long setae on the second palp segment. If differs elearly.
bowever, in the absence of the coxal process un the 4 th pair of legs, in the lower number of femoral cement gland ducts, and in the shape of the terminal palp segment, which also lacks the lone mid-dorsal setue, With the possilile exception of P. similis inadequately described from one male specimen by Barnard (1955) the combination of less than 10 cement gland ducts restricted to the femur, the 2nd coxa less than 4 limes its basal diameter. lateral processes langer than the trunk diameter (and separated hy less than their own dianterer) distingulshes P, vagus from alt congemers.

In the absence of further records of the male of P similis, and Stock's inability 10 locate the holotype (Stock 1974), morphological data on this species are still inadequateI am satistied, however, that the following features are sufficient to justify the specific status of P. vagus: larger size (e.g.. + leg 3 of P, similis is $4,79 \mathrm{~mm}$, that of P. vagus 7.45 inm), proportionately longer and more setiferous second palp segment (e.g., Barnard illustrates the second segment ay approximately 7 times its basal diameter, with a small group of setae distally; P vagus $5 \pm$ times, and with a dense fringe of Jong setae distally), stronger male propodus and the wider intervals between lateral processes. The specimens were first sighted tumbling over a sandy substrate in response to the strong tide flow at Port Phillip Heads. Because of their thigmotactio nature most specimens had attached themselves to small fragments of drifting detritus, the only itfentifiable piece of which was a portion of a colony of the arborescent bryozoan Commcopina grandis (Busk)

The specific name vagus (wandering) alludes to the situation in which the specimens were observed when collected.

The collection comprised only three males. two of which are sub-adult, and eleven females. The single mature male had remnaints of cement adhering to the fifth oviger segment indicating that eggs had been carried. Of the 11 lemales, 10 were gravid, and the low number, or complete absence of exgs in some legs, suggested that eggs had recently been deposited.

Propallene saengeri app. noy

FIG. 4A-L. FIG. 20
Specimerss Examined: Hatalype: (ovig.) Q.M. S195 Stn 6.5 I soft mud, Calliope River Gueensland 3 km upstream from mouth.

Fig. 4. Propallene saengeri sp. nov. A, Trunk of female, dorsal; B, Trunk of male, dorsal; C. Palp, male; D. Chela, male; E, Cephalic region. male ventral; F, Oviger, male; G. Ocular tubercie. female; H. Leg 3. female; I. Oviger. female, J. Cement gland duct. male; K. Propodal heel spines, female; I. Leg 3, male.
depth 2.1 m , coll. Qucensland Electricity Generating Board, May 1976. Allotype: ㅇ (grav.) Q.M. S196 Stn 8,1 1.5 soft mud, Catliope River, depth 2 m , coll. Q.E.G.B., Nov. 1976. Paratypex: 1 \& (grav-) Q.M. Sl97 Stn 7.11.1 fine mud with some delrital matter, Calliope River, Aug. $1976,1.5 \mathrm{~km}$ upstream, depth 1.5 m , coll Q,E.G.B. Aug. 1976. 1 个 (grav.) N.M.V. K49 Stu 7.11.4 coarse sand, month of Calliope River 1.5 km upstream, depth 4.8 m , coll, Q.E.G.B. Aug. 1976. 1 务 (grav.) Stī 8.11.5 soft mud, Calliope River, depth 2 m , colL. Q.E.G.B. Nov. 1976, lodged with Queensland Electricity Generating Board. 19 (grav.) Stn 8.9 .5 soft mud, Calliope River. depth 2 m , colL Q.E.G.B. Nov- 1976, lodged in author's private collection
Description: Trunk segmented, lateral probesses shorter than diameter of trunk and separated by less than their owo diameter. Each lateral process armed with one small seta situated almost mid dorsally, and 2 or 3 similar setae distally. Abdomen short, well developed for the genus, directed somewhat ventrally, Ocular tubercle: low, rounded. eyes indistinctly: pigmented lateral sense organs present.

Chelifores: scape 1-segmented: palm of chela armed with several setac. Immovable finger with four teeth, movable finger with five tecth. Both fingers curved, gaping when elosed.

Palp only present in male; 2-segmented. basal segment short and unarmed, Distal segmont approximately 3.5 times as long as basal segment and slightly greater thar six times its own proximal diameter, armed distally with Pour long setac. No constriction evident,

Ovigers: In male, segment 5 longest. Distally this segment bears setiferous lobe with small and inconspicuous opposing tooth-like process. Recurved spinules present on segment 3,4 and 5. Segment 7 bears 2 long setate reaching beyond segment 8 . Compound spines on segments $7-10$ according to formula 10:10:8:9. Compound spines polymorphous. proximal spines bear 7-9 lateral teeth of about equal size on either side. Distal spines bear two pairs of heavily sclerotized basal teeth; termimal spine broad and bears 2 large basal tecth on either side (Fig. 2. D). In female, segment It is longest, segment 5 without distal lobe and process, recurved spinules absent. Compound spine formula $12: 10: 9: 11$.

Measurements of ovager segments (mm):

 10 6 , 10, ㅁ.12.

Legs: Femur is longest segment; ilhin I langer than fibja 2. sparsely setose: second coxa approximately 3.5 times as long as is proximal diameter; propodal heet with two terbimally crenulate spines; sole with $8-10$ spines. Auxiliary claws absent, Cement gland tubules present on femur, tibia 1 and tibia 2 of the male, Four tubules on tibia 1 of all legs, $4-6$ femoral tubules and 3-4 on titis 2 . Genilat pores not visible. In female, femue swollen tos accommodate ovaries. Genital pores prescat on ventro-distal surface of second coxac of all legs.

Mensurements of holotype and allotype (mm) : length truok (frontal margin cephalun to Lip of abdomen) \& 1,1, \& 1.2 : Iength cephaIon 6. 31, ? . 6; greatest widih cephalon है .31, ㅇ. 35; length proboscis 6,27 , ㅇ. 35, greatest width proboscis is 2, \& 22 : width across sccond lateral process 6 . 61 , 9,62 ; diamerer trunk ơ .21, क9.24; length scape \& .22, 9,29 length palp of first seg. (04, second seg. 15, Third leg: coxa 1 b 17, ㅁ. 21 ; coxa 2 d. 32 ㅇ. 32; coxa 3 ठ' 15 , ㅇ.1.16; fomur है . 49 . 7.65 : tibia 1 of $45,9.55$; tibin 2 d $^{+1} 36.9$. 46 ; latsus 8. .06, ㅇ.. .05; propodus है . $35,7.38$; claw है 25 , 6. 28 .

Remarks: The occurrence of eement gland ducts on leg segments additional to the lemor is a notable feature previously recorded only in Nymphon and Ascorhynchus. In the absence of any mention of cement glands. in descriptions of P similis and P. stocke, it is not known whether this accurrence in $P_{\text {, }}$ snengeri is unique in the genus. Cement glands in all other members of the gents are confined to the femur.

The new species differs from P. stacki in the mature of the second palp segment which is Tonger (greater than 6 times as long as its hasal diameter) and bears a fringe of long setue dis. tally. In P. stock the second palp segment is unsrmed, and about 3 times as long as wide. Propatlene similis differs from P. shengevi inlarger size (c.g., leg 3 \& P. simtilis 4.79 mm . terminal claw excluded; $\log 3$ II P. yaungeri 2.78 mm , terminal claw excluded): higher number of teeth on the fingers of the chera; the strong constriction of the second palp segment (very slight in P, simills). and in having thisi 2 longer than tibia 1, to view of the variability neted by Stock (1975) in P. Ionsioups. however, the significance of this latter feature is uncertain.

The new species was named for Dr P. Saenger who forwarded the specimens for examination.

Diagnosis of Genus Propallene

Inclusion of the new species necessitates amendment to Stock's (1975) diagnosis of propallene.

Trunk well segmented. Ocular tubercle in posterior part of cephalic segment. Abdomen small, implanted somewhat ventrad. Proboscis roughly of type D'. Scape 1 -scgmented. Palp only present in male. Oviger 10 -segmented (6°. 9 . Segment $5\left(0^{*}\right)$ with distal apophysis and opposite distal hook-like or conical process. Compound spines present. in 1 row, proximal and distal spines on each segment very clissimilar in shape (0 . 우). No terminal oviger claw (0 *. Y). Cement glands (6) opening through numerous (5-22) short ducts on ventral surface of either femur alonc or femur, tihia 1 and tibia 2. Propodal heel spines often crenulated, but frequently indistinct; no anxiliary claws.

Gcographic distribution of Propallene

P. Kempi (Calman 1923), southeastern Asia; P. longiceps Bohm (1879b), Japan; P.
similis Barnard (1955), southern Africa; P. ardua Stock (1975b), eastern Africa. P. crassimanus Stock (1959), southern and southcastern Africa; P. stocki Fage (1956), Sierra Icone: P. crinipes Stock (1968a). Straits of Malacea: P, saengeri $5 p$. nov., northeastern Australia; P. wagus sp. nov., southeastern Australia; P. cyathus sp. nov., southeastern Australia,

Acknowledgments

I should like to express my gratitude to Di P. Saenger. Qucensland Electricity Generating Board; Mrs J. E. Watson, National Museum of Victoria, and the Latrobe Valley Water \& Sewage Board. for entrusting their collections to me. Thanks are also due to Dr B. J. Smith, National Museum of Victoria for his assistance and advice. Dr B. F. Stratford and Mr P. G. Hollis, University of Melbourne for permission to use the seanning elcatron mieroscope and Mr P. E. Bock, Royal Melbournc Institute of Technology for his identification of the Bryozoa. I also wish to acknowledge the assistance given by the Science and Industry Endowment Fund. C.S.I.R.O.

References

Barnard, K. H. (1955) Additions to the fauna-list of Sonth African Decapoda and Pyenogonida. An!. S. A/r. Mus., 43(1), 1-107.
Newele, B. S. (1961) Hydrology of south-cast Australian waters, Bass Strait and New South Wales Tuna fishing area. Aust. Divn. Fish. Ocramogr, Tech. pal. (10).

Stock, J. H. (1974) Pyenogonida from the continental shelf. slope, and deep sea of the tropical Atlantic and east Pacific. Bull. Mar. Sef., 24(4), 957-1092.
Stock, J. H. (1975) The Pgenogonid genus Propallene Schimkewitsch, 1909. Ball. Enol. Mus. Univ. Amsterdum, 4(11), 89-97.

[^0]: io Manme Study Group of Victoria, C/. National Museum of Vietoria, 285 Russell St. Melbourne. Vie. 3000.

